
A generic renderer engine for evo-devo models

Sylvain Tournois, Sylvain Cussat-Blanc, Jonathan Pascalie, Yves Duthen
Université de Toulouse - IRIT - CNRS - UMR 5505

sylvain.tournois@gmail.com, sylvain.cussat-blanc@irit.fr, jonathan.pascalie@irit.fr, yves.duthen@irit.fr

Abstract - Introduction
Whereas cell-based models have very different simulation
mechanisms, the graphical representation tends to be always
the same. In order to save the work of graphical interface de-
velopment, this paper presents a prototype of a generic multi-
platform renderer engine for evo-devo models. It proposes a
list of configurable cell states and animations put together in a
simulation file that describes the simulation story.

Description of the functioning
Split of the simulation into 3 files
This renderer is based on a 3 human-readable files that describe
the simulation. The state file describes all possible states of
a cells. It gives the list of the possible cell states and their
properties such as the name, the color of the cell nucleus, of the
cytoplasm and of the membrane. The action file contains of all
possible cell actions in the simulation. Each action is linked to
an animation that will provide a graphical representation. The
current version proposes 15 of the most important animations
(NOOP, mitosis, move, absorb, reject, apoptosis, etc.). More
animations can be easily added. Once the states and the actions
are described, the data file presents the sequence of animations
and states changes that happen during the simulation.

The data file
The sequence of actions, contained in the data file, describes
the whole simulation. Each line of the file describes a simu-
lation step. Each line begins with an integer value that repre-
sents the simulation step number. Following the number, all
cells that change their state are given. A cell is represented by
a unique identifier. If the cell position in the environment has

Figure 1: Example of obtained visualization with the renderer
engine and two different evo-devo models.

been modified without any action (add of a new cell for exam-
ple), the coordinate can be given. A new identifier automati-
cally create the cell in the given position in the environment.
Then, the new state of a cell is given. Finally, the action and its
progress (optional, usefull to pause or to control the speed of
the action) can be applied to the cell. This action will trigger
the corresponding animation, as described in the action file.

Functionalities
The renderer engine allows an a-posteriori visualization of an
evo-devo simulation. This is an advantage because it is possi-
ble to navigate backward and forward on the simulation time-
line. A direct access to every simulation step is then possi-
ble. Step by step progress in the timeline, simulation pause
and stop are other possible controls. Zoom in and zoom out
are also avalaible to visualize more details on a subpart of the
simulation. Chapters can be added in the data file in order to
go directly to a particular event.

Conclusion and Future work
This prototype of simulation player has been tested on three
very different evo-devo models develop in our own research
team. The integration was very easy and required less than one
day of work. Figure 1 illustrates two examples of utilization
of the renderer engine with two of these models [1,2]. This
software will be avalaible in the next months on the website
http://www.blabla.fr.

Many functionalities can be added to this rendering soft-
ware. The ergonomics of the renderer can be improved in or-
der to get it closer to a conventional video player (simulation
loading procedures, possible exports, etc.). A multi-layer vi-
sualization could also be interesting to implement in order to
visualized different aspects of the simulation (physical, chemi-
cal, decomposition of parallel tasks, etc.). Each layer has to be
enough generical in order to represent all kind of simulations.
Finally, an interface could be imagined in order to connect di-
rectly the renderer engine to the simulator. The engine will
keep all the features previously presented. The model could
send each time step to the renderer, which build on the fly the
timeline. The step forward feature will not be accessible any-
more but it will be possible to navigate in the past of the simu-
lation.

References
[1] S. Cussat-Blanc, H. Luga, Y. Duthen. From single cell to
simple creature morphology and metabolism. In Artificial Life
XI, pages 134–141. MIT Press, 2008.
[2] J. Pascalie, V. Lobjois, H. Luga, B. Ducommun, Y. Duthen.
A Checkpoint-Orientated Model to Simulate Unconstrained
Proliferation of Cells. In ECAL’11, MIT Press, 2011.

http://www.blabla.fr

	Abstract - Introduction
	Description of the functioning
	Split of the simulation into 3 files
	The data file
	Functionalities

	Conclusion and Future work
	References


